

DVMD-Tagung 2011

Ontologieunterstützte

Informationsaufbereitung

M. Engelhorn, Stephan Profitlich

DVMD-Tagung 2011

Man erkennt nur was man weiß

in Anlehnung an ein Zitat von J. W. von Goethe

DVMD-Tagung 2011

Fahrplan

- Motivation
- Daten Information Wissen
- Informationsaufbereitung und Wissen
- Unterstützung durch Ontologien
- Auflösen von Mehrdeutigkeiten
- Umsetzung (Projekt) und Ausblick

Motivation

Informationszuwachs

- Neue Verfahren erzeugen meist automatisiert mehr Information
- Neue Verordnungen erzwingen mehr Information
- Der einfach Zugang zu Information f\u00f6rdert den Zuwachs an Information
- Die Selektion und die Bewertung der Information wird immer schwieriger
- Zusammenhänge können immer weniger erkannt werden
- Der Überblick geht verloren.

Motivation

Informationszuwachs

- Große Mengen an Information ist unstrukturiert
- Es gibt fachspezifische Ausdrücke, Abkürzungen und Synonyme
- Es gibt unterschiedliche Schreibweisen für Sachverhalte
- Die Mehrsprachigkeit ist eine weitere Hürde
- Eine Volltextrecherche bringt häufig nicht das erwartete Ergebnis
- Sehr große und sehr kleine Treffermengen sind wenig nützlich

Motivation

Fazit

Der ständige und explosionsartiger Zuwachs an Information ist ohne maschinelle Unterstützung nicht mehr handhabbar!

Daten – Information - Wissen

Informationsaufbereitung und Generierung von Wissen

- Extraktion der Daten (63, 3.14, kg, Müller)
- Informationsgewinnung durch Erkennen von Zusammenhängen und generieren von "Metadaten" (63, kg => Gewicht)
- Wissensgenerierung durch Anreichern semantischer Zusammenhänge und Vergleich mit vorhandenem und bekanntem Wissen (Karl Müller, aktuelles Gewicht 63kg, Gewichtsverlust in den letzten 2 Wochen)

Prozessunterstützung

- Statistische Methoden (bei der Extraktion der Daten)
- Thesauri (Vokabulare)
- Taxonomien (Klassifikationen)
- Terminologien (Fachspezifische Zuordnungen)
- Nomenklaturen (Regelwerke)
- Ontologien (Wissensräume)

Automatisierung

- Zur weitgehend automatischen Aufbereitung von unstrukturierten Informationen ist der Zugriff auf vorhandenes Wissen unerlässlich.
- Auch die Erweiterungen und die Pflege des Wissens muss in diesen Prozess einbezogen werden.

Nutzung von vorhandenem Wissen

- Vorhandenes Wissen muss modelliert werden (Ontologien)
- Ontologien decken immer bestimmte Wissensräume ab (Geografie, Personen, Institutionen, etc.)
- Begrifflichkeiten sind oft mehrdeutig

Formen von Wissen

- Explizites und implizites (verborgenes) Wissen
- Unvollständiges und unscharfes Wissen
- Strukturiertes und unstrukturiertes Wissen
- Falsches, widersprüchliches und veraltetes Wissen

Beispiel "Rosenthal"

- Suche bei Google ergibt 9,31 Mio Treffer :
 - Bereiche: Porzellan (Rang 1),
 - Unterhaltung (Rang 5),
 - Geografie (Rang 12),
 - MDC (27), ...

Informationsgewinnung

Mehrdeutigkeiten

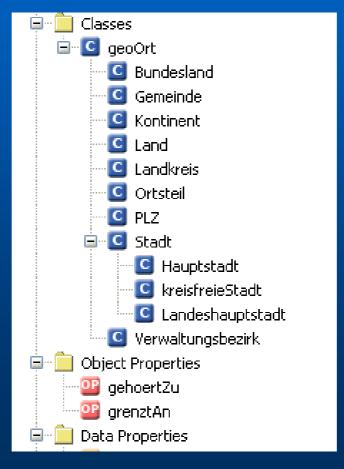
- Der Begriff "Rosenthal" kann
 - eine Person sein (Wissenschaft, Unterhaltung, ...),
 - ein geografischer Ort sein (Stadtteil von Berlin),
 - eine Institution sein (Porzellan).

Nutzung von Wissen im "Expertennetz"

- Nutzung des vorhandenen Wissens in den Ontologien
- Berechnen einer wahrscheinlichen Zuordnung zu einer Ontologie
- Erweitern der Ontologie um neue Einträge

Beispiel "Rosenthal"

- Durch Betrachtung des Kontexts:
 - _____,Prof." deutet auf eine Person hin
 - ,,Wiss. Vorstand des MDC" deutet ebenfalls auf eine Person hin
 - "MDC" als Institution ist in Berlin-Buch angesiedelt
- Zuordnung:
 - Personenontologie
 - Nicht Geografieontologie
- Ggf. Ontologien (Personen und Institutionen) erweitern



Nutzung von implizitem Wissen

- Nutzung des impliziten Wissen in den Ontologien durch "reasoning"
- Berechnen einer "Distanzfunktion"
- Nutzung der Distanzfunktion im Expertennetz

Geografieontologie

Beispiel "Rosenthal"

- Implizites Wissen über die "gehoertZu-Rlation" explizit machen
- Durch Betrachtung des Kontexts:
 - (1) Rosenthal gehört im geografischen Kontext "näher" zu "Berlin", falls Berlin in Deutschland liegt
 - (2) Rosenthal gehört im geografischen Kontext "nicht näher" zu "Berlin", falls Berlin in den USA liegt
- Zuordnung:
 - 1: Geografieontologie
 - 2: Nicht Geografieontologie

Ablauf

- Aufbau von Ontologien
- Erschließen des impliziten Wissens durch Inferenzmaschinen (Reasoner)
- Erkennen und markieren von widersprüchlichem Wissen
- Entfernen von falschem und überflüssigem Wissen

Erweiterte Prozesskette

- Extraktion der Daten
- Anreicherung mit Metainformation
- Auflösen von Mehrdeutigkeiten
- Generierung von Wissen
- Einbringen von neuem Wissen in das System

Projekt/Ausblick

Pilotprojekt "Wissensportal"

- Implementiert
 - Statistische Extraktion der Daten
 - Aufbau von mehreren Ontologien (Personen, Institutionen, Geografie, Chemie, Biologie, Medizin)
 - **Expertennetz**
- Work in Progress
 - **Integration der verschiedenen Pakete**

Projekt/Ausblick

Offene Fragen

- Umgang mit unvollständigem und unscharfem Wissen
- Umgang mit Zeitabhängigkeiten (Zeiträume)
- Datenqualität und Glaubwürdigkeit
- Performance bei großen Datenbeständen und Ontologien

Danke

Ich bedanke mich für Ihre

Aufmerksamkeit